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c;d state equality and inequality constraint vectors

D drag force, lb

E vehicle energy per unit mass, ft/sec2

f dynamical equations
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g magnitude of gravitational acceleration, ft/sec2

g0 magnitude of gravitational acceleration at sea level, ft/sec2

h altitude, ft
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L lift force, lb

l vehicle length

M Mach number

m mass, slugs

p;q hodograph equality and inequality constraint vectors

�q dynamic pressure, 1

2
�V 2, lb/ft2

RE radius of Earth, ft

r distance of HL-20 cg from center of Earth, ft

S hodograph

Sref HL-20 wing area, ft2

t time, sec

u control vector

V velocity, ft/sec

W empty weight, lb

WOMS OMS fuel weight, lb

X vector of unknowns in optimal control problem

x state vector
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x at Earth east measurement, ft

xcg center of gravity location, percent body length

xref moment reference center, percent body length

y at Earth north measurement, ft

� angle of attack, deg

� density scale height, ft�1

 ight path angle, deg

� aerodynamic coe�cient increment due to control surface deection

� control surface deection, deg

� longitude, deg

� latitude, deg

� density, slugs/ft3

�0 sea level density, slugs/ft3

� bank angle, deg

� cost function

	 boundary conditions

 heading angle, deg


 set of admissible controls

Subscripts:

e wing aps

f �nal time

l lower body aps

T total aerodynamic quantity

u upper body aps

V basic vehicle (control surfaces undeected)

0 initial time

Abbreviations:

cg center of gravity

ATO abort to orbit

CCAFS Cape Canaveral Air Force Station

ELV expendable launch vehicle

KSC Kennedy Space Center

OMS Orbital Maneuvering System

PLS Personnel Launch System

RTLS return to launch site

SRM solid rocket motor

TAL transatlantic abort landing
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Abstract

The Personnel Launch System (PLS) being studied by NASA is
a system to complement the Space Shuttle and provide alternative
access to space. The PLS consists of a manned spacecraft launched
by an expendable launch vehicle (ELV). A candidate for the manned
spacecraft is the HL-20 lifting body. In the event of an ELV malfunc-
tion during the initial portion of the ascent trajectory, the HL-20 will
separate from the rocket and perform an unpowered return-to-launch-
site (RTLS) abort. This work details an investigation, using optimal
control theory, of the RTLS abort scenario. The objective of the op-
timization was to maximize �nal altitude. With �nal altitude as the
cost function, the feasibility of an RTLS abort at di�erent times dur-
ing the ascent was determined. The method of di�erential inclusions
was used to determine the optimal state trajectories, and the optimal
controls were then calculated from the optimal states and state rates.

1. Introduction

NASA is currently studying concepts for a new
generation of manned space vehicles. This system
is known as the Personnel Launch System (PLS).
One design under consideration is a lifting body des-
ignated the HL-20 (�g. 1), which would be placed
in orbit by an expendable launch vehicle (ELV) like
the Titan III. The HL-20 is similar to previous lift-
ing body vehicles that NASA has studied, such as
the HL-10, the Martin Marietta X-24A, and the
Northrop M2-F2 (ref. 1).

An HL-20 mission would begin with a vertical
launch into low Earth orbit. It is assumed that
the launch site would be the Kennedy Space Center
(KSC) at Cape Canaveral, Florida. Once in orbit,
the HL-20 will carry out such primary duties as a
space station crew transfer or satellite repair. When
returning to Earth, the vehicle will reenter the atmo-
sphere and glide to a horizontal landing in a manner
similar to the Space Shuttle orbiter.

1.1. Description of Abort Scenarios

One area of study for the HL-20 mission is that
of aborts during the ascent phase. Five abort modes
were investigated in references 2 and 3. These are
(1) on the pad, (2) return to launch site (RTLS),
(3) ocean landing by parachute, (4) transatlantic
abort landing (TAL), and (5) abort to orbit (ATO).
A description of these abort scenarios follows.

On-the-pad aborts would occur when a problem
is detected with the booster while the HL-20 is
mounted on top of the ELV at the launch pad. This
would necessitate that the crew be removed a safe
distance from the rocket in a short period of time.

This abort would begin by �ring a solid rocket motor
(SRM) to remove the HL-20 from the ELV, and then
the HL-20 would glide to the Cape Canaveral Air
Force Station (CCAFS) skid strip or to the KSC
Shuttle Landing Facility for a horizontal landing.

Immediately after launch and until 20 sec into
the ascent phase, the vehicle could perform an RTLS
abort to the Shuttle Landing Facility. Between 20
and 64 sec the vehicle could glide back to the CCAFS
skid strip. The RTLS abort to the skid strip will be
examined in detail in this paper. Figure 2 shows the
locations of Pad 40, the skid strip, and the Shuttle
Landing Facility at KSC.

Between 65 and 430 sec the abort option would
be to parachute to an ocean landing. Beginning at
430 sec the vehicle could perform a TAL at one of
the current Space Shuttle orbiter emergency landing
sites. An ATO would be chosen from 490 to 510 sec.

1.2. Optimal Control Theory

The problem of determining the feasibility of an
RTLS abort at some time during the Titan III/
HL-20 ascent phase is essentially that of an aerospace
vehicle performing a minimum energy glide and turn
through the atmosphere to a point above a runway,
meeting some �nal boundary conditions, and satis-
fying some state and control equality and inequality
constraints during the maneuver. Optimal control
theory has been applied to the problem of hypersonic
glide in reference 4. Chern and Vinh considered the
problem of maximum downrange distance and other
cost functions for both at Earth and spherical Earth
models. They investigated the optimal control prob-
lem by using the calculus of variations approach to



HL-20 lifting body 

Top hatch

Body flaps

Wing flap Rudder

Figure 1. HL-20 lifting body.
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Figure 2. KSC runway and launch pad locations.

derive the �rst-order necessary conditions for opti-
mality described in reference 5. For each problem
considered, the assumption of constant Mach number
was made in reference 4. Much of the work dealt with
two-dimensional cases; the three-dimensional cases
investigated were maximum cross-range distance and
footprint calculation.

1.3. Purpose of Work

The use of optimal control theory applied to an
RTLS problem could determine the ultimate RTLS
performance of the HL-20, whereas the application
of a simulation tool with less optimization capability

may not. In the actual RTLS problem, the vehicle
must be own back to a point at which it can safely
make the designated runway. To apply optimal
control theory to the RTLS problem, however, careful
thought must be given to the choice of a suitable
cost function. In this work, �nal altitude was chosen
as the cost function. A solution to this optimal
control problem will determine the feasibility of an
RTLS abort, but will not determine the actual RTLS
trajectory to be own (except in two cases|the
earliest and latest times at which an RTLS abort is
possible).

In section 2 the HL-20 vehicle is described in de-
tail and the aerodynamic, atmospheric, and dynamic
models are presented. Section 3 introduces the con-
cept of the hodograph, or state rate space. The solu-
tion method and its application to the HL-20 RTLS
problem in two and three dimensions is discussed in
this section. In section 4 results are presented for the
feasible RTLS aborts along the ascent trajectory.

2. Vehicle and Model Description

2.1. Vehicle Description

A three-view drawing of the HL-20 vehicle is
shown in �gure 1, which depicts the seven control
surfaces of the HL-20: rudder, two upper body aps,
two lower body aps, and two wing aps. The
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surface deection limits for the control surfaces are
as follows: �30� for the wing aps, 0� to +60� for
the lower body aps, and �60� to 0� for the upper
body aps. A positive surface deection is taken
as trailing edge down for the wing and body aps.
In this investigation, the e�ect of the rudder was
ignored.

Table I gives geometrical and physical parame-
ters of the HL-20. The HL-20 is assumed to have
an empty weight of 22 932 lb and 2948 lb fuel for
the Orbital Maneuvering System (OMS) for a total
weight of the HL-20 at lifto� of 25 880 lb. The cen-
ter of gravity (cg) location for the empty vehicle is
55.5 percent of the vehicle length l (where 0 percent
would represent the nose) and the cg location for the
vehicle with full OMS fuel is 57.5 percent. It is as-
sumed in this study that an abort would occur with
a full load of OMS fuel.

Table I. HL-20 Physical Parameters

Vehicle length l, ft . . . . . . . . . . . . . . . 27.31

Span b, ft . . . . . . . . . . . . . . . . . . . 13.89

Wing area Sref, ft
2 . . . . . . . . . . . . . . 286.45

Empty weightW , lb . . . . . . . . . . . . . . 22932

OMS fuel weightWOMS, lb . . . . . . . . . . . . 2948

cg location (empty) xcg, percent . . . . . . . . . 55.5

cg location (full) xcg, percent . . . . . . . . . . . 57.5

2.2. Aerodynamics

The aerodynamic data for the HL-20 was taken
from reference 6. Coe�cients for cubic polynomial
expressions for drag coe�cient CD, lift coe�cient CL,
and moment coe�cient CM for the basic vehicle (con-
trol surfaces undeected) are given as functions of
angle of attack �, at various Mach numbers M . The
aerodynamic coe�cients were given for � ranging
from �2� to 16� (and sometimes higher) and for M
ranging from 0.3 to 4.0. Plots of CD and CL against �
for several values of M are shown in �gures 3 and 4.
Reference 6 also provides coe�cients for cubic poly-
nomials for increments in CD, CL, and CM due to
the control surface deections � as a function of � for
several values of � and M .

It is important that the vehicle be own within
its trim envelope. Since the vehicle uses the body
and wing aps to accomplish this, it is probable
that at some ight conditions a unique con�guration
of surface deections to trim the vehicle would not
exist. Therefore, in order to obtain trim CD and
trim CL values as functions of � and M , a nonlinear
parameter optimization problem was formulated that

0 2 4 6 8 10 12 14 16

α , deg

.1

.2

.3

.4

.5

0.3
0.6
0.9
1.1
1.6
2.0
4.0

D

M
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Figure 3. Basic HL-20 vehicle drag coe�cient.
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Figure 4. Basic HL-20 vehicle lift coe�cient.

at every combination of � and M , would minimize
the total drag coe�cient CD;T of the vehicle while
also trimming the vehicle. The independent variables
that would accomplish this were the upper body ap
deection �u, lower body ap deection �l, and the
wing ap deection �e.

The problem is to minimize the cost function

J = CD;T = CD;V +2�CD;u+2�CD;l+2�CD;e (2.1)

over the parameters �u, �l, and �e, where CD;V is
the basic (control surfaces undeected) vehicle drag,
and �CD;u, �CD;l, and �CD;e are the increments

3



to the total drag coe�cient due to the deections of
the upper body aps, lower body aps, and wing
aps, respectively. Each incremental contribution
is doubled, since increments to the coe�cients are
given for the right or left components of a control
surface that is assumed to act symmetrically (left
and right aps deect equally). The trim condition
to be satis�ed is

CM;T+
�
CL;T cos�+ CD;T sin�

��
xcg � xref

�
= 0 (2.2)

where, in a similar fashion as CD;T ,

CL;T = CL;V + 2�CL;u+ 2�CL;l + 2�CL;e (2:3)

CM;T = CM;V +2�CM;u+2�CM;l+2�CM;e (2:4)

and xref is the location of the moment reference
center from reference 6 and is equal to 54.0 percent.
The center of gravity location xcg for this problem
was for full OMS fuel. (See table I.) The basic vehicle
aerodynamic coe�cients are functions of � and M ,
and the increments of the coe�cients are functions
of �, M , and surface deection.

This nonlinear programming problem was solved
at all values of � and M for which data is given
from reference 6. The code NPSOL (ref. 7), a set of
Fortran subroutines that minimize a function subject
to linear and nonlinear constraints and bounds on the
parameters, was used to solve the nonlinear program-
ming problem. Solutions were obtained through the
full range of � (�2� to 16�) at all Mach numbers
except 1.6, 2.0, and 2.5. Table II summarizes the
results of the above parameter optimization prob-
lem, presenting maximum trim �, and maximum and
minimum trim CL. The minimum trim CL occurred
for each Mach number at � = �2�. Figure 5 plots

Table II. Maximum Trim � and CL

M �max, deg CL;max CL;min

0.3 16.0 0.6628 �0:2045

.6 16.0 .7009 �:2340

.8 16.0 .7285 �:2949

.9 16.0 .7487 �:1950

.95 16.0 .7491 �:3357

1.1 16.0 .6574 �:1906

1.2 16.0 .6288 �:2106

1.6 9.4 .2537 �:0838

2.0 10.6 .2643 �:0737

2.5 12.0 .2477 �:0658

3.0 16.0 .3895 �:0530

3.5 16.0 .3592 �:0489

4.0 16.0 .3422 �:0457

the minimum and maximum trim CL values against
Mach number.

0 .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
M

-.4

-.2

0

.2

.4

.6

.8

Max trim C
Min trim C

L
L

LC

Figure 5. Minimum and maximum trim CL.

Once values of trim CD and CL were determined
for all possible values of � and M , a curve-�t of the
form

CD = CD;0(M)+CD;1(M)CL + CD;2(M)C2
L (2:5)

was made at each value of M . The values of CD;0,
CD;1, and CD;2 are displayed in table III and plotted
in �gures 6, 7, and 8. To determine these coe�cients
at Mach numbers other than those in the table, a
spline routine is used.

Table III. Coe�cients for CD Expression

M CD;0 CD;1 CD;2

0.3 0.0438 �0:0200 0.3263

.6 .0473 �:0169 .3783

.8 .0491 �:0151 .4171

.9 .0788 �:1014 .5310

.95 .0756 �:0240 .4636

1.1 .1640 �:1605 .7288

1.2 .1534 �:0774 .6507

1.6 .1494 :0098 .8535

2.0 .1410 :0625 .3606

2.5 .1270 :0266 .6474

3.0 .1167 �:0499 .9923

3.5 .1101 �:0325 1.0738

4.0 .1080 �:0121 1.0992
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Figure 6. CD;0|zeroth-order coe�cient for CD.
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Figure 7. CD;1|�rst-order coe�cient for CD.

2.3. Atmospheric and Gravitational Model

With the 1962 U.S. Standard Atmosphere (ref. 8)
as a reference, an exponential curve-�t was made
to density � in the altitude range h from sea level
to 150 000 ft. The sea level density value �0 of the
exponential model matched the standard atmosphere
model. The model is given by

� = �0e
��h (2:6)

A cubic polynomial was �t to the standard atmo-
sphere variation of speed of sound a with altitude.
This model is of the form

a = a0+ a1h+ a2h
2+ a3h

3 (2:7)

0 .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

M

.3

.4

.5

.6

.7

.8

.9

1.0

1.1

 

C
D,2

Figure 8. CD;2|second-order coe�cient for CD.

An inverse square gravitational model was used of
the form

g = g0

�
RE

RE + h

�
2 (2:8)

where RE is the radius of the Earth and g0 is the
sea level gravity. The coe�cients and parameters for
equations (2.6), (2.7), and (2.8) are given in table IV.

Table IV. Parameters for Atmospheric and

Gravitational Models

�0, slug/ft
3 . . . . . . . . . . . . . . . 2:3769� 10�3

�, ft�1 . . . . . . . . . . . . . . . . . 3:6000� 10�5

a0, ft/sec . . . . . . . . . . . . . . . . 1:1235� 103

a1, sec
�1 . . . . . . . . . . . . . . . �5:7923� 10�3

a2, ft
�1-sec�1 . . . . . . . . . . . . . . 6:2641� 10�8

a3, ft
�2-sec�1 . . . . . . . . . . . . . �1:7708� 10�13

g0, ft/sec
2 . . . . . . . . . . . . . . . . 3:2174� 101

RE, ft . . . . . . . . . . . . . . . . . . 2:0926� 107

2.4. Dynamic Model

The equations of motion for a point mass, non-
thrusting aerospace vehicle over a spherical, non-
rotating planet may be de�ned with six states. These
states are altitude h, longitude �, latitude �, ve-
locity V , ight path angle , and heading  . The
governing equations of motion are (ref. 4)

_h = V sin  (2:9)

_� =
V cos  cos 

r cos �
(2:10)

_� =
V cos  sin 

r
(2:11)

5



_V = �
D

m
� g sin (2:12)

_ =
L

mV
cos� �

�
g

V
�

V

r

�
cos  (2:13)

_ =
L

mV cos 
sin � �

V

r
cos  cos tan� (2:14)

where r = RE + h, m is the vehicle mass, D is the
drag force, L is the lift force, and � is the bank angle.
The heading angle is zero for due east ight and
increases in a counterclockwise direction. Figure 2
shows a heading cylinder with di�erent values of  
corresponding to di�erent ight directions. From the
back of the vehicle, the bank angle � is zero when
the lift vector points directly upward, and increases
as the lift vector rotates counterclockwise from the
vertical. The lift and drag forces are given by

L =
1

2
�SrefV

2CL (2:15)

D =
1

2
�SrefV

2CD (2:16)

where Sref is the total wing area of the HL-20.

In the time between the launch and the com-
mencement of an RTLS abort, the vehicle distance
from the landing strip is small compared with the
radius of the Earth. Also, the maximum speed the
vehicle attains during an RTLS abort is much smaller
than orbital velocity. These two conditions lead to
the use of the simpler at Earth equations of motion:

_h = V sin  (2:17)

_x = V cos  cos (2:18)

_y = V cos  sin (2:19)

_V = �
D

m
� g sin  (2:20)

_ =
L

mV
cos� �

g

V
cos  (2:21)

_ =
L

mV cos 
sin � (2:22)

In this system, longitude and latitude have been
replaced with at Earth Cartesian coordinates x
and y. The origin of the x-y system is a point on the
extended skid strip centerline, 10 725 ft southeast of
the skid strip threshold. The x-axis points east and
the y-axis north. The location and orientation of this
coordinate system is shown in �gure 2.

The controls for this problem are the lift coe�-
cient CL and the bank angle �, which together spec-
ify the magnitude and direction of the aerodynamic
lift vector.

3. Hodograph Analysis and Solution

Method

In this section optimal control theory and the con-
cept of the hodograph are discussed. The hodograph
leads directly to the concept of the set of attain-
ability and to the method of di�erential inclusions,
which is used to solve the optimal control problems
presented in this work. A two-dimensional maxi-
mum �nal altitude problem is presented, and the so-
lution method as applied to this problem is discussed.
This discussion is then extended to a problem in
three dimensions representing the HL-20 RTLS abort
problem.

3.1. Optimal Control Theory

A general optimal control problem involves �nd-
ing the control function u(t) that maximizes a scalar
cost function

J = �
�
x
�
tf
��

(3:1)

subject to the di�erential constraints

_x(t)= f [x(t);u(t)]
�
t0 � t � tf

�
(3:2)

where x 2 Rn is the state vector, u 2 Rm is the
control vector, and t is the time. Assume free �nal
time tf for this problem. Some of the states at the
initial and �nal times, t0 and tf , may be given in the
form

	
�
x(t0);x

�
tf
��
= 0 (3:3)

In addition, there may be control and state equality
and inequality constraints of the form

g[x(t);u(t)]= 0 (3:4)

h[x(t);u(t)]� 0 (3:5)

c[x(t)]= 0 (3:6)

d[x(t)]� 0 (3:7)

Equations (3.1){(3.7) constitute an optimal control
problem. For a derivation of the necessary conditions
that must be satis�ed for u(t) to be a solution of the
above problem, see reference 5.

3.2. The Hodograph and the Set of

Attainability

The notation of reference 9 is adopted to discuss
the hodograph. For a set of states x, the hodograph,
or state-rate space, is de�ned as the set of all possible
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state rates _x that can be achieved by varying the con-
trols within their permissible limits . The hodograph
can be represented by

S(x)=f _x 2 Rnj _x = f(x;u);u 2 
(x)g (3:8)

where 
(x) is the set of admissible controls:


(x)=fu 2 Rmjg(x;u)= 0;h(x;u)� 0g (3:9)

The controls can then be thought of as an instrument
for parameterizing the hodograph. The optimal state
history and optimal cost associated with the optimal
control problem de�ned in equations (3.1){(3.7) will
be unchanged if the control vector is replaced by any
other set of variables (with the appropriate control
constraint functions, eqs. (3.4) and (3.5)), so long as
the hodograph remains unchanged.

As described in reference 9, it is assumed that
the controls can be expressed in terms of the states
and state rates so that there are smooth functions p
and q such that the hodograph can be rewritten as

S(x)=f _x 2 Rnjp( _x;x)= 0;q( _x;x)� 0g (3:10)

The information from equations (3.8) and (3.9) has
been combined into equation (3.10) and the hodo-
graph has been expressed entirely in terms of states
and state rates, with no controls present. The pres-
ence of the inequality constraints q in equation (3.10)
implies that the state rates can take on values within
the range of permissible state rates as determined by
the admissible controls. Therefore, instead of speci-
fying the value of the state rates as in a di�erential
equation, we choose the state rates from among their
permissible values. This is the concept of di�erential
inclusions.

Now de�ne the set of attainability K(t0;x0; t1) as
the set of all states to which the state vector x0 at t0
can be steered to at time t1 by varying the controls
through the admissible range. The set of attain-
ability has a direct relationship to the hodograph
and, for a small enough time step, can be approx-
imated to �rst order by using the hodograph. Let
�t be the small time step and let t1 = t0 +�t.
Approximate the set of attainability by

~K(t0;x0; t1)=fx 2 Rnjx = x0 +�t � S(x0)g (3:11)

When �t is small enough, it can be seen that the
states at neighboring times are related by the hodo-
graph and the set of attainability concepts. In an
optimal control problem, the states must be chosen
to maximize the cost function J , and neighboring

states must lie within the set of attainability as de-
termined by the state rates and the time step. The
range of state rate values is determined by the ad-
missible controls. If a �rst-order approximation to
the state rates is made using the values of the states
at two nodal points, the problem has been reduced
to a determination of the optimal states only, with
constraints specifying the set of attainability.

3.3. Numerical Approach

Subdivide the time interval, which, without loss
of generality, is assumed to be t 2 [0; 1] into N

equal subintervals. Then the N + 1 nodes can be
represented by

ti =
i

N
(3:12)

where i = 0; 1; 2; :::; N . Let the vector X be of length
n � (N + 1) representing the state vector x at the
nodes, where x 2 Rn. The optimization problem
is now to �nd the vector X that will minimize the
cost function

J = �[x(tN)] (3:13)

subject to the boundary conditions

	[x(t0);x(tN)]= 0 (3:14)

If the state rates are approximated by

_�xi =
xi+1� xi

�t
(3:15)

and the states by

�xi =
xi + xi+1

2
(3:16)

then the necessary constraints are

p
�
_�xi; �xi

�
= 0

q
�
_�xi; �xi

�
� 0

)
(3:17)

where i = 0; 1; 2; :::; N � 1. In equations (3.15){
(3.17), the simple Euler approximation in equa-
tion (3.11) has been replaced by a more precise
midpoint rule.

The problem has become one of �nding the states
at the nodes that optimize the cost function subject
to the boundary conditions and the equality and
inequality constraints p and q. These two constraint
vectors contain the dynamical information and must
be satis�ed at the midpoint of each node. In other
words, a nonlinear programming problem must be
solved, where the parameters are the states at the
nodes. The code NPSOL was used to solve the
nonlinear programming problem.
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3.4. HL-20 RTLS Abort|Hodograph

Analysis

The use of this solution method for the HL-20
RTLS abort problem de�ned in the previous section
is now examined. For a solution of the optimal con-
trol problem to exist, it is required that the hodo-
graph be convex and that the optimal state rates be
on the boundary of or within the hodograph. This
implies using inequality constraints to specify the
surface and interior of the hodograph. To explain
how this is done, the hodograph of a two-dimensional
nonthrusting aerospace vehicle over a at Earth is ex-
amined. With this as a foundation, the concepts are
then extended to the full three-dimensional problem.

3.4.1. Two-dimensional case. The optimal
RTLS abort problem in two or three dimensions is to
maximize the cost function

J = h
�
tf

�
(3:18)

or, equivalently, to minimize the cost function

J = �h
�
tf

�
(3:19)

The equations of motion for the two-dimensional case
are

_h = V sin  (3:20)

_x = V cos  (3:21)

_V = �
�V

2
SCD

2m
� g sin  (3:22)

_ =
�V SCL

2m
�

g

V
cos  (3:23)

where h, x, V , and  are de�ned as in section 2. The
one control in this case is CL, and CD is again given
by

CD = CD;0+ CD;1CL + CD;2C
2

L (3:24)

It is assumed that CL is bounded by

0 � CL � CL;max (3:25)

Now select permissible values of the four states
and determine the state rates from equations (3.20){
(3.23) as the control CL varies throughout its ad-
missible region given by equation (3.25). The re-
sult is a two-dimensional hodograph. Since the
equations for _h and _x are independent of the con-
trol, the hodograph in the _h; _x space is a single
point whose coordinates are given by equations (3.20)
and (3.21).

Figure 9 shows a drag polar as given by equa-
tion (3.24). If CD and CL from (3.22) and (3.23) are
determined as

CD = �
2m

�V 2S

�
_V + g sin 

�
(3:26)

and

CL =
2m

�V S

�
_ +

g

V
cos 

�
(3:27)

then it is seen that the hodograph in the _V ; _ space is
similar to the drag polar in the CL; CD space but it is
scaled and shifted. Equation (3.24) is the boundary
of the two-dimensional hodograph.

CD

C
D, max

D,0C

D, minC

L, maxC LC

Figure 9. Drag polar (two-dimensional hodograph).

As stated previously, the optimal state rates must
lie on the surface of, or within, this hodograph or
drag polar. This requires that for some value of CL,
the value of CD, given by equation (3.26), must be
greater than or equal to the value of CD on the drag
polar, given by equation (3.24), or

�

2m

�V 2S

�
_V + g sin

�
� CD;0+CD;1CL+CD;2C

2

L (3.28)

where CL is given by equation (3.27). Since CL is
bounded, this implies an upper limit to CD. Adding
a constraint on the upper limit of CD implies that it is
necessary to search for the optimal state rates in the
shaded region of �gure 9. To do this, the constraint

�
2m

�V 2S

�
_V + g sin 

�
� CD;max (3:29)

where CD;max is given by

CD;max= CD;0+ CD;1CL;max+CD;2C
2

L;max (3:30)

is needed. Although the physics of this aerospace
problem suggests that equation (3.28) should actu-
ally be an equality, the convexity condition of the
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hodograph tells us that an inequality constraint is
equivalent.

The parameter optimization problem must there-
fore satisfy the equality constraints

_h� V sin  = 0 (3:31)

_x� V cos  = 0 (3:32)

and the inequality constraints of equations (3.28)
and (3.29). After the optimal states have been
found from the nonlinear programming problem, the
control CL can be found from equation (3.27). For
the two-dimensional case, the size of the equality
constraint vector p is 2 (eqs. (3.31) and (3.32)), and
the size of the inequality constraint vector q is 2
(eqs. (3.28) and (3.29)).

3.4.2. Three-dimensional case. Now this
analysis is extended to the three-dimensional case.
The cost function for this case will remain the same
as for the two-dimensional case. In a similar fashion
to equations (3.31) and (3.32), the di�erential equa-
tions for altitude, downrange distance, and cross-
range distance (h, x, and y) lead to the three equality
constraints that must be satis�ed

_h� V sin  = 0 (3:33)

_x� V cos  cos = 0 (3:34)

_y � V cos  sin = 0 (3:35)

To determine the necessary hodograph inequal-
ity constraints, the two-dimensional hodograph is ro-
tated about the vertical, or CD, axis. This three-
dimensional hodograph is shown in �gure 10. The
rotated drag polar in the CL cos �, CL sin �, and CD
space is similar to the hodograph in the _V , _,

and _ space, since

CL sin � =
2m

�V S

�
_ cos 

�
(3:36)

CL cos � =
2m

�V S

�
_ +

g

V
cos 

�
(3:37)

CD = �
2m

�V 2S

�
_V + g sin 

�
(3:38)

Once again, the hodograph in the _V , _, and _ space
is a scaled and translated version of the rotated drag
polar in the CL cos �, CL sin �, and CD space.

Note that since the two-dimensional drag polar
is not symmetric about the CD axis (because of the

CD

LC  sin σ

L
C  cos σ

CD, max

CD,0

Figure 10. Rotated drag polar (three-dimensional hodograph).

linear CD;1 term) the rotated three-dimensional drag
polar is not convex. It can be seen that the minimum
value of CD(CD;min) is less than CD;0, and so the bot-
tom of the three-dimensional hodograph appears to
be pushed upward into the interior of the convex hull
of the hodograph. The three-dimensional hodograph
could be made convex by requiring that when CL is
less than the value of CL for CD;min(CLjCD;min) then

CD = CD;min (3:39)

This attens out the hodograph at the bottom and
is known as relaxing the problem. For a discussion
of the convex hull of the hodograph and relaxing an
optimal control problem, see reference 10. It was
found that it was not necessary to relax the problem
because the optimal values of CL, as determined from
the optimal states and state rates, showed that CL is
always larger than CLjCD;min

.

To calculate the controls for the three-dimensional
case, it is seen from equations (3.36) and (3.37) that
the bank angle � can be expressed as

tan� =
_ cos 

_ +(g=V )cos 
(3:40)

and the lift coe�cient can be expressed as

CL =
2m

�V S

r�
_ cos 

�
2 +

�
_ +

g

V
cos 

�
2 (3:41)

Equation (3.41) is similar to equation (3.27) but with
a term to reect the heading rate.

To restrict our search for the optimal state rates
to the boundary or interior of the rotated drag polar,
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Table V. Trajectory Conditions and Abort Initial Conditions at 30 Sec

Trajectory conditions Abort initial conditions

Altitude, ft . . . . . . . . . . . . . 1:07025576� 10
4

2:77408551� 10
4

Velocity, ft/sec . . . . . . . . . . . 8:04746952� 10
2

1:01506581� 10
3

Latitude, deg . . . . . . . . . . . . 2:84006296� 10
1

2:84001727� 10
1

Longitude, deg . . . . . . . . . . . 2:79428431� 10
2

2:79445672� 10
2

Flight path angle, deg . . . . . . . . 7:11376932� 10
1

6:49159663� 10
1

Azimuth, deg . . . . . . . . . . . . 9:16395039� 10
1

9:19469374� 10
1

the same two inequality constraints as in the two-
dimensional problem are needed, equations (3.28)
and (3.29). The lift coe�cient CL is now given
by equation (3.41) and not equation (3.27). So for
the three-dimensional case, the size of the equality
constraint vector p is 3 (eqs. (3.33){(3.35)), and the
size of the inequality constraint vector q is again 2.

For each abort case considered, NPSOL was
used to solve the nonlinear programming problem
with 41 nodes. This resulted in a problem with
247 (6� 41 + 1) independent variables representing
the states at each node and the �nal time, 212
(5� 40 + 12) constraints representing the 5 hodo-
graph constraints that must be satis�ed at the mid-
point of each interval, 6 initial state boundary con-
ditions, 5 �nal state boundary conditions, and a
parameter representing the free �nal time. The num-
ber of hodograph constraints will be explained in the
next section. The di�erence in the state histories be-
tween converged cases with 41 nodes and 101 nodes
was examined and found to be insigni�cant; so in the
interest of computational time, 41 nodes were used
in all cases.

4. Results

In this section, the launch pro�le of the HL-20
vehicle boosted by a Titan III launch vehicle is
�rst discussed. Then the mechanism for ELV/
HL-20 separation is briey described. Initial and �-
nal conditions for an RTLS abort are given, and re-
sults for RTLS aborts at three times along the ascent
trajectory are presented.

4.1. Ascent Launch Pro�le

Throughout the investigation it is assumed that
the HL-20 is delivered to orbit by a Titan III rocket.
The ascent trajectory of this Titan III/HL-20 com-
bination is given in reference 3. This ascent trajec-
tory was determined from abort considerations for
all portions of the trajectory. Only that portion of
the ascent trajectory during which the HL-20 can
safely return to the launch site is of interest in this
investigation.

4.2. Separation Mechanism

Reference 3 describes the mechanism for separat-
ing the HL-20 from the Titan III. There are two sets
of four SRM's to perform the separation. For RTLS
aborts, four primary abort SRM's burn for 3.5 sec
with a combined thrust of 248 800 lb. This is followed
by four sustainer abort SRM's of 33 000 lb combined
thrust burning for 12.5 sec. These solid rocket motors
are required to get the HL-20 away from an explod-
ing ELV. It is assumed that the OMS engines do not
�re during the separation or during the RTLS abort
glide back to the runway.

When an abort at time t = T sec is discussed, it is
understood that the initial abort conditions are the
conditions at time T along the ascent trajectory, fol-
lowed by the primary SRM's burn, followed by the
sustainer SRM's burn (when possible). The initial
conditions for an abort at time T along the ascent
trajectory will then be the conditions at time T , fol-
lowed by the 3.5-sec burn of the primary SRM, fol-
lowed by the 12.5-sec sustainer SRM burn. The pri-
mary and sustainer SRM burns are assumed to occur
for all abort cases except when noted otherwise.

4.3. Initial and Final Boundary

Conditions

To understand the e�ect of the SRM burns on the
HL-20 position and velocity, two ight conditions for
the vehicle are presented in table V. The second col-
umn shows the conditions at T = 30 sec along the
launch trajectory. The third column shows the condi-
tions that would result if an RTLS abort commenced
at T = 30 sec after launch (when the vehicle had the
conditions given in the second column) with the two
SRM burns. The SRM's have the primary e�ect of
increasing the vehicle altitude and velocity. The po-
sition and heading do not change signi�cantly dur-
ing the �ring of the SRM's for this case. As the
ascent trajectory attens out, however, the position
is increasingly a�ected by the SRM burns.

The initial conditions for aborts beginning at
times from 15 to 65 sec along the launch trajectory
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Table VI. RTLS Abort Initial State Boundary Conditions

Time,
sec h, ft x, ft y, ft V , ft/sec , deg  , deg

15.0 1:8745648� 104 �5:7470680� 103 4:5283500� 104 1:0011717� 103 5:2205378� 101 �1:9757279� 100

20.0 1:9542422� 104 �1:4644223� 104 4:5599964� 104 9:2742651� 102 7:8466266� 101 �1:8261807� 102

25.0 2:3134577� 104 �9:1229215� 103 4:5412128� 104 9:6635809� 102 6:9053372� 101 �1:9055671� 100

30.0 2:7740855� 104 �6:3246933� 103 4:5323737� 104 1:0150658� 103 6:4915966� 101 �1:9469374� 100

35.0 3:3599490� 104 �3:2577126� 103 4:5222760� 104 1:1221480� 103 6:5218080� 101 �1:9956142� 100

40.0 4:0475148� 104 6:3478304� 102 4:5090776� 104 1:3057310� 103 6:5236462� 101 �2:0383687� 100

45.0 4:7865123� 104 6:0726763� 103 4:4902247� 104 1:5278721� 103 6:2192217� 101 �2:0711914� 100

50.0 5:5686139� 104 1:2990810� 104 4:4656591� 104 1:7782816� 103 5:7285346� 101 �2:1044202� 100

55.0 6:4005911� 104 2:1276190� 104 4:4355667� 104 2:0602513� 103 5:2767337� 101 �2:1401928� 100

60.0 5:0263039� 104 1:2722135� 104 4:4203290� 104 2:5275142� 103 5:3469427� 101 �3:0684166� 100

65.0 5:8047153� 104 2:0051551� 104 4:4405061� 104 2:7780916� 103 5:0050729� 101 �2:0997439� 100
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Figure 11. Initial altitude for HL-20 RTLS abort.
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Figure 12. Initial x for HL-20 RTLS abort.
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Figure 13. Initial y for HL-20 RTLS abort.

are given in table VI and also in �gures 11{16. The
sustainer SRM's burn is not used for the 60- and
65-sec cases because if they are �red, the vehicle is
unable to return to the skid strip.

The �nal states are chosen as follows. In refer-
ence 3 a �nal altitude of 2000 ft and dynamic pressure
of 300 lb/ft2 were targeted, where dynamic pressure �q

is given by �q = 1

2
�V 2. These values correspond to a

�nal velocity of 520.8 ft/sec. Although a di�erent
�nal altitude will result from a solution of the opti-
mal control problem as posed, the same �nal velocity
was targeted. As in reference 3, a �nal  of �19� was
used.

The �nal location above the ground corresponded
to a point on the extended centerline of the skid
strip runway 31, displaced 10 725 ft to the southeast
of the runway threshold. Since this point does not
change for any of the cases examined, the origin of the
x-y system was placed here so that x(tf) = y(tf) = 0.
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Figure 14. Initial velocity for HL-20 RTLS abort.
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Figure 15. Initial ight path angle for HL-20 RTLS abort.

In latitude and longitude coordinates, this point
is �(tf ) = 28�1603300 and �(tf) = 279�2705500. At
this �nal point the vehicle should be lined up with
the runway so it should have a �nal heading an-
gle of  (tf) = �220:7

�. These �nal conditions are
summarized in table VII.

A solution to the optimal control problem as
posed will result in a trajectory that, in most cases,
ends at an altitude well above the skid strip. It
is assumed that some control logic exists that can
steer the vehicle to any altitude lower than the max-
imum �nal altitude, while also meeting the terminal
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Figure 16. Initial heading angle for HL-20 RTLS abort.

Table VII. RTLS Abort Final State Boundary Conditions

x, ft . . . . . . . . . . . . . . . . . . . . . . . 0.0

y, ft . . . . . . . . . . . . . . . . . . . . . . . 0.0

V , ft/sec . . . . . . . . . . . . . . . . . . . . 520.8

, deg . . . . . . . . . . . . . . . . . . . . . �19:0

 , deg . . . . . . . . . . . . . . . . . . . . �220:7

boundary conditions. Therefore, using �nal altitude
as a cost function will determine the feasibility of
an RTLS abort and will not determine the actual
trajectory that should be own back to the runway
(except in two cases|the times of earliest and latest
aborts, when the vehicle will be above the �nal point
with only enough altitude to reach the skid strip and
are).

4.4. Results of RTLS Aborts

There will be some �nal critical altitude at the
�nal (x; y) location below which the vehicle cannot
glide back to the runway. The �nal altitude that was
targeted in reference 3, h(tf) = 2000 ft, will be used
for this critical altitude. If the �nal optimal altitude
is greater than this, under the assumption from
the previous section, it is assumed that a successful
landing following an RTLS abort is possible.

It was found that the vehicle could make it back
to the skid strip between 15 sec and 65 sec into
the launch. No data was available for the time
before 15 sec. At 70 sec, the vehicle is too far from
the skid strip to return and would have to land in
the ocean by deploying a parachute.
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The cost function (�nal altitude) is shown in
�gure 17 plotted against the time along the launch
trajectory at which an abort procedure is initiated.
It is seen that the �nal altitude in all cases is greater
than the critical altitude of 2000 ft, which suggests
that in all cases an abort is possible.
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Figure 17. Cost function versus abort time.

The 15-, 30-, and 65-sec cases are now examined
in detail. Figures 18{29 show the states and controls
for RTLS aborts at these times. When states for an
RTLS problem are plotted against time, t = 0 refers
to the moment when the �nal SRM's (primary or
sustainer) have ceased �ring.

Figure 18 shows that the �nal altitudes were
11 200 ft, 17 700 ft, and 11 300 ft for the 15-, 30-,
and 65-sec abort cases, respectively. Making the
assumption that a control logic exists to steer the
vehicle to 2000 ft if the �nal optimal altitude is
greater than this, it is seen that in each case there
is some altitude margin at the �nal point, and an
RTLS abort is possible at 15, 30, and 65 sec into the
launch.

Each abort case exhibits the same characteristic
of trading velocity for altitude to reach some max-
imum altitude, and then continually losing altitude
for the rest of the trajectory (�g. 18). It can be seen
that the initial altitude increases as the launch time
increases from 15 to 30 to 65 sec as the ELV/HL-20
climbs on its ascent trajectory. The 65-sec case is
seen to have a much longer time of ight than the
other two cases (280 sec compared to 120 sec).

The ground track of the three cases shows the
eastward travel of the ELV as it ascends from 15
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Figure 18. Altitude versus time for 15-, 30-, and 65-sec aborts.

50

40

30

20

10

0

-10
-2 0 2 4 6 8 10 12

x, ft

y, ft
15-sec case
30-sec case
65-sec case

x 103

x 104

Figure 19. Ground track for 15-, 30-, and 65-sec aborts.

to 30 to 65 sec, and also shows that the 65-sec case
has a much longer ground track than the other two
cases (�g. 19), as would be expected from the much
longer time of ight. All cases end up at the origin
of the coordinate system heading in a northwesterly
direction as desired.

The velocity and Mach number pro�les in �g-
ures 20 and 21 show that initial velocity and Mach
number increase as the launch time increases from 15
to 30 to 65 sec. They also show that for each case the
velocity initially decreases as the vehicle climbs, and
that after it reaches its maximum altitude the vehi-
cle picks up speed as it dives. In the 65-sec abort
case, the vehicle starts supersonic, becomes subsonic
during its climb, then becomes supersonic again dur-
ing the dive, and �nally ends at a subsonic veloc-
ity. The �nal velocity in each case is the desired
V (tf) = 520:8 ft/sec.
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Figure 20. Velocity versus time for 15-, 30-, and 65-sec aborts.
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Figure 21. Mach number versus time for 15-, 30-, and 65-sec

aborts.

The characteristics of climbing and losing speed
and diving and gaining speed can also be seen in the
ight path angle histories (�g. 22), which also show
that the ascent trajectory is attening out (decreas-
ing (t0)) as the ELV climbs from 30 to 65 sec. Oscil-
lations are apparent in the ight path angle history,
and in the 65-sec case the vehicle reaches a maximum
negative  of nearly �80�. The �nal ight path angle
in each case is the desired (tf) = �19

�.

The heading history for each case shows nearly
easterly ight along the ascent trajectory and a �nal
heading aligned with the runway. It is also seen that
in each case the vehicle wants to turn to the right (de-
creasing  ) for the entire duration of the trajectory,
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Figure 22. Flight path angle versus time for 15-, 30-, and

65-sec aborts.
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Figure 23. Heading angle versus time for 15-, 30-, and 65-sec

aborts.

ending in each case at the desired  (tf) = �220:7
�

(�g. 23).

If the vehicle energy per unit mass, or speci�c
energy, is de�ned as

E =
V 2

2
+ g(h)h (4:1)

the energy pro�les (�g. 24) show that initial energy
increases along the ascent trajectory and that �nal
energy, with �nal velocity �xed, exhibits the same
characteristic as �nal altitude for the three cases.
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Figure 24. Energy versus time for 15-, 30-, and 65-sec aborts.
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Figure 25. Dynamic pressure versus time for 15-, 30-, and

65-sec aborts.

That is, just as h(tf) for the 30-sec abort case is
greater than h(tf) for the 65-sec case, which is greater
than h(tf) for the 15-sec case, so is E(tf) for the
30-sec case greater than E(tf) for the 65-sec case,
which is greater than E(tf) for the 15-sec case.

Dynamic pressure histories for the three cases are
shown in �gure 25. The maximum dynamic pres-
sure �qmax occurs in each case at the initial time
when the velocity is greatest. The vehicle dynamic
pressure decreases immediately as the vehicle gains
altitude and loses speed. When the vehicle reaches
its maximum altitude and has lost a large portion
of its initial speed, the dynamic pressure decreases

to a point where the aerodynamic control surfaces
may no longer be e�ective. To maintain control sur-
face authority in this region, it may be necessary
to impose a minimum dynamic pressure constraint.
This becomes more important when the maximum
altitude achieved for each abort case becomes in-
creasingly greater and dynamic pressure becomes
correspondingly smaller.

The normal and axial load factors, aN and ax, are
de�ned for small � as

aN = L=W (4:2)

ax = D=W (4:3)

and shown in �gures 26 and 27. The load factors
do not present a problem in the 15- and 30-sec abort
cases. During the 65-sec case however, on the pullout
from the  = �80� dive, the load factors increase
to 4.2 and 2.5 for the normal and axial directions,
respectively. A constraint on the load factors can be
imposed should these values be considered too large.

The reason for the high load factors can be seen
from a plot of the required lift coe�cient (�g. 28)
calculated from the states and state rates (eq. (3.41)).
For the 65-sec abort case, a spike in the CL history
occurs at the pullout of the dive, resulting directly in
the normal load factor spike and, indirectly through
drag coe�cient, resulting in the axial load factor
spike.

Figure 29 shows bank angle histories for the three
cases. It is seen that for the 15- and 30-sec cases
inverted ight is desired (� < �90�) at the beginning
of the trajectory, with the remainder of the trajectory
ying upright. For the 65-sec case however, the
vehicle begins upright, ies inverted for a time, and
then ends upright with a signi�cant portion of time
spent ying with a bank angle of nearly 0�.

The vehicle could y the initial portion of the 15-
and 30-sec trajectories inverted with positive lift or
upright with negative lift. It is assumed that when
the lift vector is directed downward, the vehicle will
y inverted. Since there is a linear term in the CD
expression, the value of CD for values of CL with
equal magnitude but opposite sign will not be equal.
In fact, since CD;1 is negative at most Mach numbers
(except for M = 1:6, 2.0, and 2.5|see table III),
then CD for a positive value of CL is less than CD for
a negative value of CL with equal magnitude. Flying
inverted with positive lift will result in lower drag
than ying upright with negative lift of the same
magnitude.

As stated previously, some altitude margin exists
for the 15- and 65-sec abort cases. Since data were
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Figure 26. Normal load factor versus time for 15-, 30-, and

65-sec aborts.
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Figure 27. Axial load factor versus time for 15-, 30-, and

65-sec aborts.

not available for the time before 15 sec, it is not
known if an abort of this type is possible. However,
applying the work in reference 11, which involved
RTLS aborts to the skid strip runway 13 from the
launch pad (i.e., abort time of 0 sec), the assumption
can be made that RTLS aborts to the skid strip are
possible at any time before 15 sec. The latest time
an abort is possible would be slightly after 65 sec
(but before 70 sec, since an abort was not possible
at this point because of the distance of the vehicle
from the skid strip). At all the times for which
initial conditions are given in the tables, RTLS aborts
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Figure 28. Lift coe�cient versus time for 15-, 30-, and 65-sec

aborts.
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Figure 29. Bank angle versus time for 15-, 30-, and 65-sec

aborts.

were also possible, but the data are not shown here,
since the 15-, 30-, and 65-sec cases are considered
representative of all the cases.

5. Concluding Remarks

This work has applied optimal control theory
to the problem of determining the feasibility of an
return-to-launch-site (RTLS) abort of an HL-20 ve-
hicle carried into orbit by a Titan III expendable
launch vehicle (ELV). The trajectories that resulted,
in which �nal altitude near the runway was maxi-
mized, were not the trajectories the HL-20 would fol-
low to return to the skid strip at Cape Canaveral Air
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Force Station. Although the problem of determining
the actual RTLS abort trajectory is also of interest
for the trajectory planner, that was not covered here.

It was found that for an HL-20 launched from
Kennedy Space Center (KSC) pad 40, RTLS aborts
could be performed to runway 31 of the KSC skid
strip between the launch times of 15 sec and 65 sec,
after which, though the vehicle energy has increased,
the vehicle is too far away to glide back.

Maximizing �nal altitude with �nal velocity �xed
is nearly the same problem as maximizing �nal en-
ergy (or minimizing energy loss). The minimum
energy loss problem has application in the calcula-
tion of the maximum achievable ground coverage, or
footprint, of a reentry vehicle or the abort paths of
vehicles such as the National Aero-Space Plane.

Additional future work in the area of optimal
RTLS aborts could involve shaping the ascent tra-
jectory of an ELV to maximize the amount of time
during which an RTLS abort could be performed.
The use of the orbital maneuvering system engines
during the abort phase and adding guidance logic to
the primary and sustainer solid rocket motor burns
could also be investigated.

NASA Langley Research Center
Hampton, VA 23681-0001
April 21, 1994
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